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Abstract

Scalable management of distributed resources is one of
the major challenges in deployment of large-scale clusters.
Management includes transparent fault tolerance, efficient
allocation of resources, and support for all the needs of par-
allel computing: parallel I/O, deterministic behavior, and
responsiveness. Meeting these requirements with commod-
ity hardware and operating systems is difficult because they
were not designed to support global management of a large-
scale system. In this paper we propose a small set of hard-
ware mechanisms in the cluster interconnect to facilitate the
implementation of a simple yet powerful global operating
system. This system, inspired by concepts from the BSP and
SIMD computational models, allows commodity clusters to
grow to thousands of nodes while still retaining the usabil-
ity and responsiveness of the single-node workstation. Our
results on a software prototype show that it is possible to
implement efficient and scalable system software using the
proposed set of mechanisms.

Keywords: Cluster computing, cluster operating system,
network hardware, debuggability, resource management,
fault tolerance.

1 Introduction

Although workstation clusters are a common platform
for high-performance computing (HPC), they remain con-
siderably more difficult to manage than single-node systems
or symmetric multiprocessors. Furthermore, as cluster size
increases, the role of the system software—essentially all of
the code that runs on a cluster other than the applications—
becomes increasingly more important. The system soft-
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ware’s main components include the communication li-
brary, resource manager, parallel file system, system moni-
tor, and the infrastructure to implement fault tolerance. The
quality of the system software not only affects application
performance but also the cost of ownership of such ma-
chines.

System software design for high-performance clusters
traditionally relies on an abstraction that views the network
simply as a mechanism for moving information with a per-
formance expressed by latency and bandwidth. The success
of this interface relies on the implicit assumption that any
performance improvement in the network is directly inher-
ited by the system software. On the other hand, abstract
interfaces may change to exploit new hardware capabilities.
For example, in the last decade this basic abstract interface
has been augmented to exploit distributed shared memory.
A global, virtually addressed shared memory which enables
remote direct memory access (RDMA) is now a common
feature in networks as Infiniband [18] or Quadrics [19].

In this paper we try to answer question of what hardware
features, and thus which abstract interface, should the inter-
connection network provide to the system software design-
ers? We argue that the efficient and scalable implementa-
tion of a small set of network primitives that perform global
queries and distribution of data is sufficient to support most
system software and user applications. These primitives can
be easily implemented in hardware with current technology
and can greatly reduce the complexity of most system soft-
ware. In a sense they represent the least common denomi-
nator of the various components of the cluster software, and
the backbone to integrate a collection of local operating sys-
tems (OS) into a single, global OS.

This paper makes the following contributions. First, it
makes the case for the importance and the potential of hav-
ing these primitives for global coordination fully imple-
mented in hardware. Second, a series of case studies shows
how the system software can benefit from these primitives.



We provide experimental evidence that resource manage-
ment and job scheduling can can be implemented on thou-
sands of nodes and achieve the same level of responsiveness
as a dedicated workstation, without any significant increase
in complexity. Finally, we describe how a popular commu-
nication library, the Message Passing Interface (MPI), can
be implemented with these global coordination primitives.
The proposed implementation is so simple that it can run
almost entirely on the network interface card (NIC) as fast
as the production-quality MPI.

The rest of the paper is organized as follows. The next
section describes some of the system tasks required on clus-
ters and the problems that need to be addressed to achieve
responsive and scalable environments. Section 3 details the
core primitives and mechanisms that constitute the building
blocks of our proposed scalable system software. Section 4
presents several case studies and reports several experimen-
tal results obtained on our software prototype. Section 5
concludes and offers directions for future research.

2. Challenges in the Design of System Software

Many of today’s fastest supercomputers are composed
of commercial off-the-shelf (COTS) symmetric multi-
processor (SMP) servers connected by a fast interconnect.
These nodes typically use commodity operating systems
such as Linux to provide a hardware abstraction layer to
programmers and users. These OSes are quite adequate for
the development, debugging, and running of applications
on independent workstations and small clusters. However,
such a solution is often insufficient for running demanding
HPC applications in large clusters.

Common cluster solutions include middleware exten-
sions on top of the workstation operating system, such as
the MPI communication library [22] to provide some of the
functionality required by these applications. These compo-
nents tend to have many dependencies and their indepen-
dent designs may lead to redundancy of functionality. For
example, both the communication library and the parallel
file system used by the HPC applications implement their
own communication protocols. Even worse, some desired
features such as multiprogramming, garbage collection, or
automatic checkpointing are either not supported at all or
are very costly in terms of both development costs and over-
all performance degradation. Consequently, there is a grow-
ing gap between the services enjoyed on a workstation and
those provided to HPC users, forcing many application de-
velopers to complement these services in their application.
Table 1 overviews several of these gaps in terms of the ba-
sic functionality required to develop, debug, and effectively
use parallel applications. Next we discuss some of the gaps
in detail.

Job launching. Virtually all modern workstations allow
simple and quick launching of jobs, thus enabling inter-
active tasks such as debugging sessions or visual applica-
tions. In contrast, clusters offer no standard mechanism
for launching parallel jobs. Typical workarounds rely on
shell scripts or custom middleware. Job launching times
can range anywhere from seconds to hours and are usually
far from interactive. Many solutions have been suggested,
ranging from the use of generic tools such as rsh and NFS,
to sophisticated programs such as RMS [9], GLUnix [12],
Cplant [3], BProc [13], and SLURM [15]. However, be-
cause of their reliance on software mechanisms, with larger
clusters (thousands of nodes) these systems may be ex-
pected to take many seconds or minutes to launch parallel
jobs.

Job scheduling. In the workstation world it is taken for
granted that several applications can be run concurrently
using time sharing, but this is rarely the case with clus-
ters. Most middleware used for parallel job scheduling use
simple versions of batch scheduling (or gang-scheduling at
best). This affects both the user’s experience of the ma-
chine, which is less responsive and interactive, and the sys-
tem’s utilization of available resources. Even systems that
support gang scheduling typically revert to relatively high
time quanta to hide the high overhead costs associated with
context switching a parallel job [11, 14, 23].

Communication. User processes running in a worksta-
tion communicate with each other using standard inter-
process communication mechanisms provided by the OS.
While these may be rudimentary mechanisms that provide
no high-level abstraction, because of their low synchroniza-
tion requirements they are adequate for serial and coarse-
grained distributed jobs. Unlike these jobs, HPC applica-
tions require a more expressive set of communication tools
to keep the software development effort manageable.

The prevailing communication model for modern HPC
applications is message passing, where processes use a
communication library to send synchronous and asyn-
chronous messages to each other. Of these libraries, the
most commonly used is MPI [22]. These libraries offer
standards that facilitate portability across various cluster
and MPP architectures. However, in order to improve the
latency and bandwidth for single messages, much effort is
required to tune these libraries to different platforms. An-
other problem is that these libraries offer low-level mech-
anisms that force the software developer to focus on im-
plementation details, and make modeling application per-
formance difficult. In order to simplify and abstract the
communication performance of applications, various per-
formance models have been suggested [6, 24].
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Table 1. System tasks in workstations and clusters

Characteristic Workstation Cluster

Job Launching Operating system (OS) Scripts, middleware on top of OS
Job Scheduling Timeshared by OS Batch queued or gang scheduled with large quanta

(seconds to minutes) using middleware
Communication OS-supported standard IPC mecha-

nisms and shared memory
Message Passing Library (MPI) or Data-Parallel
Programming (e.g. HPF)

Storage Standard file system Custom parallel file system
Debuggability Standard tools (reproducibility) Parallel debugging tools (non-determinism)
Fault Tolerance Little or none Application / application-assisted checkpointing

Determinism. Serial applications are much easier to de-
bug than their parallel counterparts: their inherent determin-
ism makes many problems easy to reproduce. In contrast,
for a large parallel program a trace of message passing may
have a practically unbounded number of correct orderings;
the difficulty of debugging an inherently non-deterministic,
asynchronous system is exacerbated by interference by the
debugging tool itself by imposing constraints on execution
order (reduces non-determinism).

Fault tolerance. Non-determinism also makes fault toler-
ance using checkpointing challenging because the applica-
tion is rarely known to be in a state wherein all processes
and in-transit messages are synchronized. Fault tolerance
on workstations is not considered a major problem and thus
rarely addressed by the OS. On large clusters, however,
where the high number of components results in a low mean
time between failures, and the amount of computation in-
vested in a single execution of an application can be sig-
nificant, fault tolerance becomes one of the most critical is-
sues. Here there is no standard solution available, and many
of the existing solutions rely on modifying applications or
introduce a considerable application slowdown [2].

2.1 Designing a Parallel Operating System

The design, implementation, debugging, and optimiza-
tion of system middleware for large-scale clusters is far
from trivial, and potentially very time- and resource con-
suming. System software is required to deal with one or
more parallel jobs comprising thousands of processes each.
Furthermore, each process may have several threads, open
files, and outstanding messages at any given time. All these
elements result in a large and complicated global machine
state which in turn increases the complexity of the system
software. The lack of global coordination is a major cause
of the non-deterministic nature of parallel systems. The
lack of synchronization also diminishes application perfor-
mance, for example, when non-synchronized system dæ-

mons introduce computational holes that can severely skew
and impact fine-grained applications [20].

To address these issues, we promote the idea of a simple,
global cluster OS that makes use of advanced network re-
sources, just like any other HPC application. Our vision is
that a cluster OS should behave like a SIMD application,
performing resource coordination in lockstep. We argue
that performing this task scalably and at sub-millisecond
granularity requires hardware support realizable by a small
set of network mechanisms. Our goal in this study is to
identify and describe these mechanisms. Using a prototype
system on a network that supports most of these features,
we present experimental results that indicate that a cluster
OS can be scalable, powerful, and relatively simple to im-
plement. We also discuss the gaps between our proposed
mechanisms and the available hardware, and suggest meth-
ods for overcoming these limitations.

3 Core Primitives and Mechanisms

In this section, we characterize the primitives and mech-
anisms that we consider essential in the development of sys-
tem software for large-scale clusters. We then explain how
to use these mechanisms to overcome the challenges raised
in the previous section.

3.1 Suggested Mechanisms

The proposed architectural support consists of just three
hardware-supported network primitives:

XFER-AND-SIGNAL Transfer (PUT) a block of data from
local memory to the global memory of a set of nodes
(possibly a single node). Optionally signal a local
and/or a remote event upon completion. By global
memory we refer to data at the same virtual address on
all nodes. Depending on implementation, global data
may reside in main or network-interface memory.

TEST-EVENT Poll a local event to see if it has been sig-
naled. Optionally, block until it is.
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COMPARE-AND-WRITE Arithmetically compare a
global variable on a node set to a local value. If the
condition is true on all nodes, then (optionally) assign
a new value to a (possibly different) global variable.

Note that XFER-AND-SIGNAL and COMPARE-AND-
WRITE are both atomic operations. That is, XFER-AND-
SIGNAL either PUTs data to all nodes in the destina-
tion set (which could be a single node) or (in case of
a network error) no nodes. The same condition holds
for COMPARE-AND-WRITE when it writes a value to a
global variable. Furthermore, if multiple nodes simultane-
ously initiate COMPARE-AND-WRITEs with identical pa-
rameters except for the value to write, then, when all of
the COMPARE-AND-WRITEs have completed, all nodes
will see the same value in the global variable. In other
words, XFER-AND-SIGNAL and COMPARE-AND-WRITE

are sequentially consistent operations. TEST-EVENT and
COMPARE-AND-WRITE are blocking operations, while
XFER-AND-SIGNAL is non-blocking. The only way to
check for completion is to TEST-EVENT on a local event
that XFER-AND-SIGNAL signals. These semantics do not
dictate whether the mechanisms are implemented by the
host CPU or by a network co-processor. Nor do they re-
quire that TEST-EVENT yield the CPU (though it may be
advantageous to do so).

3.2 Implementation and Portability

The three primitives presented above assume that the
network hardware provides global, virtually addressable
shared memory and RDMA. These features are present in
several state-of-the-art networks like QsNet and Infiniband
and their functionality has been extensively studied [18, 19].
While the physical implementation aspects of these primi-
tives are outside the scope of this paper, we note that some
or all of them have have already been implemented in sev-
eral other interconnects, as shown in Table 2. They were
originally designed to improve the communication perfor-
mance of user applications. To the best of our knowledge
their usage as an infrastructure for system software was not
explored before this work.

Hardware support for multicast messages sent with
XFER-AND-SIGNAL is needed to guarantee scalability for
large-scale systems. Software approaches, while feasible
for small clusters, do not scale to thousands of nodes. In our
case, QsNet provides hardware-supported PUT/GET opera-
tions and events so that the implementation of XFER-AND-
SIGNAL is straightforward.

COMPARE-AND-WRITE assumes that the network is
able to return a single value to the calling process regard-
less of the number of queried nodes. Again, QsNet includes
a hardware-supported global query operation that allows the
implementation of COMPARE-AND-WRITE.

Table 2 shows the expected performance of the mecha-
nisms that are already implemented by several interconnect
technologies. While several networks already support at
least some of these mechanisms, we argue that they should
become a standard part of every large-scale interconnect.
We also stress that their implementation must exhibit scal-
ability and high performance (in terms of bandwidth and
latency) for them to be useful to the system software.

Table 2. Measured/expected performance of
the core mechanisms for � nodes

Network COMPARE ( 	 s) XFER (MB/s)

Gigabit Ethernet [21] 
��������� Not available
Myrinet [4, 5] ���������� �������
Infiniband [18] ���������� Not available1

QsNet ([19]) ����� ���������
BlueGene/L [1] ���  !�"���

3.3 System Software Requirements and Solutions

Next we examine the areas where current system soft-
ware is lacking and explain how the proposed mechanisms
can simplify the design and implementation of practical so-
lutions. Table 3 summarizes these arguments.

Job Launching The traditional approach to job launch-
ing, including the distribution of executable and data files
to cluster nodes, is a simple extension of single-node job
launching: data is transmitted using network file systems
such as NFS, and jobs are launched with scripts or simple
utilities such as rsh or mpirun. These methods do not scale
to large machines where the load on the network file system,
and the time it would take to serially execute a binary on
many nodes, make them inefficient and impractical. Several
solutions have been proposed for this problem, all focusing
on software tricks to reduce the distribution time. For exam-
ple, Cplant and BProc both use their own tree-based algo-
rithm to distribute data with latencies that are logarithmic in
the number of nodes [3, 13]. While more portable than re-
lying on hardware support, these solutions are significantly
slower and not always simple to implement [10].

Decomposing job launching into simpler sub-tasks
makes more clear that it needs only modest effort to make
the process efficient and scalable:

# Executable and data distribution are no more than a
multicast of packets from a file server to a set of nodes,
and can be implemented using XFER-AND-SIGNAL.

1Multicast is an optional operation in the Infiniband standard.
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Table 3. Network mechanisms usage

Characteristic Requirement Solution

Job Launching Data dissemination XFER-AND-SIGNAL

Flow control COMPARE-AND-WRITE

Termination detection COMPARE-AND-WRITE

Job Scheduling Heartbeat XFER-AND-SIGNAL

Context switch responsiveness Prioritized messages / Multiple rails
Communication PUT XFER-AND-SIGNAL

GET XFER-AND-SIGNAL

Barrier COMPARE-AND-WRITE

Broadcast COMPARE-AND-WRITE + XFER-AND-SIGNAL

Storage Metadata / file data transfer XFER-AND-SIGNAL

Debuggability Debug data transfer XFER-AND-SIGNAL

Debug synchronization COMPARE-AND-WRITE

Fault Tolerance Fault detection COMPARE-AND-WRITE

Checkpointing synchronization COMPARE-AND-WRITE

Checkpointing data transfer XFER-AND-SIGNAL

We may use COMPARE-AND-WRITE for flow control
to prevent the multicast packets from overrunning the
available buffers.

# Actual launching of a job can be achieved simply and
efficiently by multicasting a control message to all the
nodes that are allocated to the job by using XFER-
AND-SIGNAL. In response the system software on
each node would then fork the new processes and wait
for their termination.

# The reporting of job termination can incur much over-
head if each node sends a single message for every
process that terminates. This problem can be solved
by ensuring that all the processes of a job reach a
common synchronization point upon termination (us-
ing COMPARE-AND-WRITE) before delivering a sin-
gle message to the resource manager (using XFER-
AND-SIGNAL).

Job Scheduling. Interactive response times from a sched-
uler are required to make a parallel machine as usable as
a workstation. This in turn implies that the system must
be able to perform preemptive context switching with the
same latencies we have come to expect from single pro-
cessor systems, that is, on the order of a few milliseconds.
Such latencies are virtually impossible to achieve without
hardware support: the time required to coordinate a context
switch over thousands of nodes can be prohibitively large
in a software-only solution. A good example of this is the
SCore-D software-only gang scheduler of Hori et al. [14].
There the time for switching the network context on a rel-
atively small Myrinet cluster is more than two thirds of the

total context switch time. Furthermore, the context switch
message is propagated to the nodes using a software-based
multicast tree, increasing in latency as the cluster grows.
Finally, even though the system is able to efficiently con-
text switch between different jobs, the coexistence of appli-
cation traffic and synchronization messages in the network
could unacceptably delay response to the latter. If this oc-
curs even on a single node for even just a few milliseconds it
will have a detrimental effect on the system responsiveness.

To overcome these problems the network should offer
capabilities to the software scheduler for preventing these
delays. The ability to maintain multiple communication
contexts alive in the network securely and reliably, with-
out kernel intervention, is already implemented in some
state-of-the-art networks like QsNet. Job context switch-
ing can be easily achieved by simply multicasting, using
XFER-AND-SIGNAL, a control message to all the nodes in
the network. One method of guaranteeing quality of service
for synchronization messages is to have support for message
prioritization. The current generation of many networks, in-
cluding QsNet, does not yet support prioritized messages in
hardware, so a workaround must be found to keep the sys-
tem messages’ latencies low. In our case, we exploit the fact
that some of our clusters have dual networks (two rails), and
use one rail exclusively for system messages so that they do
not compete with application-induced traffic.

Determinism and fault tolerance. Even when a single
application is running (one network context, no preemp-
tion), messages can still be en route at different times and
the system’s state is not deterministic. When the system
globally coordinates all the application processes, parallel
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jobs can be led to evolve in a controlled manner. Global
coordination can be easily implemented with XFER-AND-
SIGNAL, and can be used to perform global scheduling of
all the system resources. Determinism can be enforced by
taking the same scheduling decisions between different exe-
cutions. At the same time, the global coordination of all the
system activities helps to identify the states along the pro-
gram execution in which it is safe to checkpoint the status.

Communication. Most of MPI’s, TCP/IP’s, and other
communication protocols’ services can be reduced to a
rather basic set of communication primitives, e.g. point-to-
point synchronous and asynchronous messages and multi-
casts. If the underlying primitives and the protocol reduc-
tions are implemented efficiently, scalably, and reliably by
the hardware and cluster OS, respectively, the higher level
protocol can also inherit the same benefits of scalability,
performance, and reliability. In many cases, this reduction
is simple and can eliminate the need for many of the im-
plementation quirks of protocols that need to run on a va-
riety of network hardware. To illustrate this strategy we
have implemented a small subset of the MPI library, called
BCS-MPI [8], which has sufficient functionality to support
real applications. As shown in the next section these appli-
cations have similar performance using BCS-MPI as using
production-quality versions of MPI, but have the potential
to benefit from the simplicity, determinism and scalability
of BCS-MPI.

4. Case Studies

To demonstrate our thesis that these mechanisms can
be exploited by a scalable global OS we built a prototype
resource-management system, called STORM, and tested it
on three architectures. In all cases we used the Quadrics
Elan3 network as our interconnect because it supports most
of the mechanisms described in Section 3. In this section
we review the performance and scalability that can be ob-
tained with these mechanisms on three tasks: job launching,
job scheduling, and deterministic communication.2

4.1. Software Environment

Our prototype resource-management system is com-
posed of a set of dæmons that run on the compute nodes
and management node of a cluster [10]. It contains a net-
work abstraction layer that uses the described mechanisms
for executing tasks such as job launching, process coordi-
nation (e.g. gang scheduling), and resource accounting. Al-
though currently implemented as user-mode dæmons, we

2In [10] we study in detail other properties of STORM’s job scheduling
and job launching abilities, and model their scalability.

plan to fully incorporate the core functionality of STORM
with the Linux kernel to obtain optimal performance and la-
tencies. The code is relatively small at around 10,000 lines
of C for the core functionality.

In addition to resource management, the core primi-
tives can be used to implement almost any communica-
tion protocol while still retaining the advantages of perfor-
mance and determinism. Here we have implemented the
previously mentioned BCS-MPI. To use BCS-MPI applica-
tions simply need to be re-linked against the new libraries
without any code modification. However, to achieve the
best performance of BCS-MPI it can be beneficial to re-
place blocking communication calls such as MPI Send()
and MPI Recv() with their non-blocking counterparts. This
allows BCS-MPI to aggregate several communication calls
together within the same timeslice whenever possible, so
improving the possibility of interleaving communication
and computation.

In the following case studies we used both synthetic and
real HPC applications. The applications SWEEP3D and
SAGE are representative of two hydrodynamics codes from
the ASCI workload [16, 17].

4.2. Hardware Environment

For the experimental evaluation we used two differ-
ent clusters at LANL/CCS-3 to test our mechanisms on
different processor architectures. The clusters are called
Crescendo and Wolverine. All clusters used a 128-port
Quadrics Elite switch and Quadrics software library version
1.5.0-0. Table 4 summarizes the hardware comprising each
cluster.

4.3. Job Launching

In this set of experiments we study the cost associated
with launching jobs with STORM and analyze STORM’s
scalability with the size of the binary and the number of PEs
on Wolverine. We use the approach taken by Brightwell et
al. in their study of job launching on Cplant [3], which is
to measure the time it takes to launch run a program of size
4 MB, 8 MB, or 12 MB that then terminates immediately.

STORM logically divides the job-launching task into
two separate operations: the transmission of the binary
image, and the actual execution, which includes send-
ing a job-launch command, forking the job, waiting for
its termination, and reporting back to the machine man-
ager (MM). For the transmission of the binary images the
MM uses XFER-AND-SIGNAL for multicasting chunks and
COMPARE-AND-WRITE for flow control. To reduce non-
determinism the MM can issue commands and receive the
notification of events only at the beginning of a timeslice.
Therefore, both the binary transfer and the actual execu-
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Table 4. Cluster Description

Component Feature Crescendo cluster Wolverine cluster

Node Number $ PEs 32 $ 2 64 $ 4
Memory/node 1GB 8GB
I/O buses/node 2 2
Model Dell PowerEdge 1550 AlphaServer ES40
OS Red Hat Linux 7.3 Red Hat Linux 7.1

CPU Type (speed) Pentium-III (1GHz) Alpha EV68 (833MHz)
I/O bus Type 64-bit/66MHz PCI 64-bit/33MHz PCI
Network NIC model 1 $ QM-400 Elan3 2 $ QM-400 Elan3
Software Compiler Intel C/Fortran v5.0.1 Compaq’s C Compiler
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Figure 1. Send and execute times for several
file sizes on an unloaded system (Wolverine)

tion will take at least one timeslice. To minimize the MM
overhead and expose maximal protocol performance, in the
following job-launching experiments we use a small time
quantum of 1 ms.

Figure 1 shows the time needed to transfer and execute
a do-nothing program of sizes 4 MB, 8 MB, and 12 MB on
1–256 processors. Observe that the send times are propor-
tional to the binary size but grow only slowly with the num-
ber of nodes. This is explained by the scalable algorithms
and hardware mechanism that are used for the send opera-
tion. On the other hand, the execution times are quite inde-
pendent of the binary size but grow more rapidly with the
number of nodes. The reason for this growth is the skew,
mainly due to the OS, that is accumulated by the processes
of the job. In the largest configuration tested a 12 MB file
can be launched in 110 ms, a remarkably low latency.

Scalability Issues These job launching results are com-
parable to other systems in the literature for clusters of up

Table 5. A selection of job-launch times (in
seconds) found in the literature

Software Job-launch time / program size

rsh %"� Minimal job on 95 nodes [12]
RMS �'& % 12 MB job on 64 nodes [10]
GLUnix ��& ( Minimal job on 95 nodes [12]
Cplant ��� 12 MB job on 1,010 nodes [3]
BProc �'&) 12 MB job on 100 nodes [13]
SLURM 
*& % Minimal job on 950 nodes [15]
STORM �+&,�"� 12 MB job on 64 nodes [10]

to a few hundreds of nodes (see Table 5). Our premise is
that one of the main advantages of using hardware mecha-
nisms is that the resource manager can inherit the scalabil-
ity features of the hardware layer. To verify this property,
we have elsewhere presented a detailed model of STORM’s
job-launching scalability [10]. In that work we have also
extrapolated the expected job-launching performance of the
software-based methods found in the literature. Not sur-
prisingly, the hardware-supported mechanisms of STORM
provide at least an order of magnitude better performance
on very large clusters. In fact, it is the only system that is
expected to deliver sub-second performance on thousands
of nodes.

4.4. Job Scheduling

STORM supports a variety of job scheduling algorithms
including various batch and time-sharing methods. Some
of the time-sharing methods require a global synchroniza-
tion message (strobe), which STORM implements using
XFER-AND-SIGNAL. We have chosen to focus our eval-
uation specifically on gang scheduling [7], which is one
of the most popular coscheduling algorithms. In partic-
ular we have studied the effect of timeslice on overhead.
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Figure 2. Effect of time quantum with a multi-
programming level (MPL) of 2 on 32 nodes

Smaller timeslices yield better response time at the cost
of decreased throughput (due to scheduling overhead that
cannot be amortized). To measure this overhead, we use
SWEEP3D and a do-nothing synthetic program, and run
two copies of each concurrently, with different timeslice
values. Figure 2 shows the average run time of the two jobs
for timeslice values from 300 	 s to 8 seconds, running on
the entire Crescendo cluster. The smallest timeslice value
that the scheduler can handle gracefully is � 300 	 s, any
less than which the node cannot process the incoming strobe
messages at the rate they arrive. With a timeslice as short
as 2 ms STORM can run multiple concurrent instances of
SWEEP3D with virtually no performance degradation over
a single instance of the application.3 This timeslice is an
order of magnitude smaller than the local Linux scheduler’s
quanta, and is significantly smaller than the smallest time
quanta that conventional gang schedulers can handle with-
out significant performance penalties [9]. This, together
with brisk job launching, allows for workstation-class sys-
tem responsiveness on a large parallel system.

4.5. Communication Library

In the following experiments we demonstrate the perfor-
mance of BCS-MPI. Of interest here is the impact of BCS-
MPI’s global synchronization of all the nodes in order to
schedule communication requests issued by the application
processes. We also provide and analyze some results com-
paring the performance of BCS-MPI to that of Quadrics
MPI, a production-quality implementation of MPI.

3This result is also influenced by the poor memory locality of
SWEEP3D—the lack of a small memory working set implies minimal ex-
tra penalty for a context switch.

With BCS-MPI a global strobe is sent to all the nodes
(using XFER-AND-SIGNAL) at regular intervals. This
tightly couples all the system activities by requiring that
they occur at the same time on all nodes. Both computation
and communication are scheduled and the communication
requests are buffered. At the beginning of every timeslice
a partial exchange of communication requirements, imple-
mented with XFER-AND-SIGNAL and TEST-EVENT, pro-
vides the information needed for scheduling the communi-
cation requests issued during the previous timeslice. After
that all of the scheduled communication operations are per-
formed by using XFER-AND-SIGNAL and TEST-EVENT.

The BCS-MPI communication protocol is implemented
almost entirely in the network interface card (NIC). By run-
ning on the NIC’s processor, BCS-MPI is able to overlap
the communication with the ongoing computation. The ap-
plication’s processes directly interact (transparently via the
BCS-MPI library) with threads running in the NIC. When
an application process invokes a communication primitive,
it simply posts a descriptor in a region of NIC memory that
is accessible to a NIC thread. This descriptor includes all
the communication parameters which are needed to com-
plete the operation. The actual communication is performed
by a set of cooperating threads running in the NICs (using
XFER-AND-SIGNAL). In QsNet, these threads can directly
read/write from/to the application process memory space
(no copies to intermediate buffers are required). Moreover,
the posting of the descriptor is a lightweight operation, mak-
ing the entire overhead of the BCS-MPI call even lower than
that of the Quadrics MPI.

The communication protocol is divided into micro-
phases within every timeslice and its progress is also glob-
ally synchronized. To illustrate how BCS-MPI primitives
work, two possible scenarios for blocking and non-blocking
MPI primitives are described in Figure 3(a) and Figure 3(b),
respectively. In Figure 3(a), process P - sends a message
to process P . using MPI Send and process P . receives a
message from P1 using MPI Receive: (1) P - posts a send
descriptor to the NIC and blocks. (2) P . posts a receive de-
scriptor to the NIC and blocks. (3) The transmission of data
from P - to P . is scheduled since both processes are ready
(all the pending communication operations posted before
timeslice / are scheduled if possible). (4) The communi-
cation is performed (all the scheduled operations are per-
formed before the end of timeslice /102� ). (5) P - and P .
are restarted at the beginning of timeslice / . (6) P - and P .
resume computation. Note that the delay per blocking prim-
itive is 1.5 timeslices on average. However, this penalty can
be usually be avoided by using non-blocking communica-
tions or by scheduling a different job in timeslice /304� .
Figure 3(b) shows the same situation for non-blocking MPI
primitives. In this case, communication is completely over-
lapped with computation with no performance penalty.
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Figure 3. Blocking and Non-Blocking MPI Send/MPI Receive Scenarios in BCS-MPI

In Figure 4(a) the runtime of SWEEP3D for both BCS-
MPI and Quadrics MPI is shown for various numbers of
processes on the Crescendo cluster. The effective overlap
between computation and communication along with the
low overhead of its primitives allow BCS-MPI to slightly
outperform Quadrics MPI, with speedups of up to 2.28%.

Scalability Issues To complete the application study and
to gain a better understanding of BCS-MPI’s scalability,
we show SAGE’s performance on Crescendo with Quadrics
and BCS-MPI. Unlike SWEEP3D, which requires square
configurations, SAGE can run on any number of nodes. Fig-
ure 4(b) shows the run time of SAGE on varying both the
number of nodes and the problem size, up to 62 (one node is
reserved for the MM). Both versions perform similarly be-
cause SAGE uses mostly non-blocking point-to-point com-
munication. Most notably, BCS-MPI performs slightly bet-
ter than Quadrics MPI for the largest configuration, which
indicates that the scalability of SAGE is not an issue with
BCS-MPI and this cluster size.

5. Conclusions and Future Work

In this paper we proposed a new abstraction layer for
large-scale clusters. This layer, which can be implemented
by as few as three communication primitives in the network
hardware, can greatly simplify the development of system
software. In our model the system software is a tightly-
coupled parallel application that operates in lockstep on all
nodes. If the hardware support for this layer is both scalable
and efficient the system software inherits these properties.
Such software is not only relatively simple to implement but
can also provide parallel programs with most of the services
they require to make their development and usage efficient

and more manageable. In particular, we discuss how this
abstraction layer can be used for the implementation of ef-
ficient, deterministic communication libraries, workstation-
class responsiveness, and transparent fault tolerance. We
have presented initial experimental results which demon-
strate that scalable resource management and application
communication are indeed feasible while making the sys-
tem behave deterministically. Our future work will expand
to incorporate transparent fault tolerance into the system
software. We also plan to explore other possible benefits
of a global operating system, such as coordinated parallel
I/O and debugging. Lastly, we plan to migrate our code into
the Linux kernel. Such an integration should also improve
further the performance of the cluster operating system.
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